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A system of differential equations for consecutive reactions inside a nonisotropic catalyst particle 
under conditions of internal diffusion is solved. The system of diffusion equations for the spherical 
geometry of the catalyst grain is numerically solved by using the collocation method. The solu­
tion is sought for various radial activity profiles across the catalyst particle and for various 
values of Thiele's modulus for the two consecutive reactions. The effect of the reaction orders 
with respect to the reactants on the degree of utilization of the internal catalyst surface and on the 
reaction selectivity is examined. 

In technical practice the desired products of catalytic reactions frequently undergo 
additional, unwanted changes. The processes then bear typical features of consecutive 
reactions. For increasing the throughput of the equipment, hence, the rate of the reac­
tion leading to the product, active catalysts are conveniently employed. However, 
increase in the catalyst activity results not only in an increased reaction rate but also 
in an increased effect of the internal diffusion. When seeking for the optimum yield, 
it is necessary to assess the effect of the various parameters on the selectivity of the 
consecutive reactions involved. 

The objective of this work was a study of the influence ofthe radial activity profile, 
rates of the consecutive reactions, and the internal diffusion on the degree of utiliza­
tion of the internal catalyst surface effectiveness factor and on the selectivity of the 
consecutive reactions. A simpler problem has been treated previously! for a single 
irreversible reaction of the first or zeroth order. 

Catalyst particles often have a nonisotropic character. A nonuniform distribution 
of the active component, leading to the occurrence of a radial activity profile across 
the particle, frequently develops during the impregnation of the inert support with the 
active component solution 1,2, or it can also result from the process of gradual de­
activation of the catalyse. 

THEORETICAL 

For the mathematical modelling purposes the substance is assumed to move through 
the grain looked upon as a homogeneous material, and Fick's law with a constant 

Collection Czechoslovak Chem. Commun. [Vol. 51) [1986] 



Consecutive Reactions inside a Nonisotropic Catalyst Particle 55 

diffusion coefficient of the reaction components is used for the description of the dif­
fusion behaviour4 • The radial concentration profile of the active component across 
the catalyst particle is represented by a power functions. The reaction rate constant 
then is dependent on the particle radius as 

k = koR". (1) 

Different distribution profiles of the rate constant across the catalyst particle then 
can be modelled by varying the inhomogeneity parameter oc. According to Eq. (1), 
the profile is nearly uniform for low inhomogeneity parameters (oc ~ 0'1); for high oc 
values (oc ~ 10), on the other hand, the activity profile corresponds to a situation 
where the active component is located within a thin surface layer near the outer 
surface of the catalyst grain. 

The shape of the concentration profile of the active component across the support 
is an important property of a support catalyst. By choosing a catalyst with a suitable 
distribution of the active component, the catalyst activity in the reaction of interest 
can be improved considerably6. For instance, for a fast reaction, where the reaction 
course is markedly affected by internal diffusion, it is convenient if the active com­
ponent is as close to the outer grain surface.as possible, whereas for a slow reaction, 
i.e., a reaction with a fast transport of the reaction components, a uniform distribu­
tion of the metal across the catalyst grain can be more advantageous6. 

A system of differential equations describing the system of consecutive reactions 

A ~ B ~ C (A) 

under conditions of internal diffusion is solved in this work for a spherical geometry 
of the catalyst particle, using the collocation method 1• 

The diffusion of the reaction components for consecutive reactions of the n-th 
and m-th order, respectively, is described by a system of differential equations,7 

formulated for dimensionless concentrations and radial coordinate R (see List of 
Symbols) as 

(1/R 2) (d/dR) [R2(dCA/dR)] = elcAR'" 

(1/R2 ) (d/dR) [R2(dCB/dR)] = ei(KC: - CA) R" . 

The boundary conditions are 

CA = 1, CB = 0 (R = 1). 
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Thiele's moduli for components A and B can be written 7 as 

e~ = R2k 1/DA 

ei = R2k2/DB . 

Hanika, Fialova: 

(6) 

(7) 

In this treatment, the two diffusion coefficients will be put mutually equal (DA = DB). 

CALCULATIONS 

Concentration Profile of Component A 

Suppose that the first reaction, A - B, is first order. The collocation method is 
based on the assumption that the concentration profile across the catalyst particle 
can be solved in a polynomial form. Due to the spherical symmetry of the particle, 
the solution of the equation can be expected to be an even function; hence, a poly­
nomial with even powers of coordinate R can be considered. For instance, for com­
ponent A we have 

(8) 

which satisfies the diffusion equation in four chosen collocation points within the 
interval R j E <0; 1). The polynomial chosen also meets the two boundary conditions. 
The coefficients, Ao, A 2 , ••• , As, are to be determined. Let us substitute the CA(R) 
polynomial in differential equation (2): 

(9) 

The residue of the differential equation be Q(R): 

(10) 

Now, suppose that CA(R) is the exact solution of the differential equation in a finite 
number of selected points characterized by coordinates R; then the residue must be 
zero for all the R values, hence, in all collocation points. 

Applying the collocation method to our problem we demand that residue (10) 
of the differential equation be zero in the preselected points with the coordinates 
Rl = 0·2, R2 = 0·4, RJ = 0·6, R4 = 0·8. Four linear equations ofthe form 

Q(R1) = 0 (i = 1 through 4) (11) 

follow from this for the determination of the coefficients Ao through As. The fifth 
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equation for the unknown coefficients of the polynomial, 

(12) 

follows from boundary condition (5). 
By solving this system of linear equations, the A's, and thus an approximate solu­

tion of Eq. (2), are obtained. 
Polynomial (8) can be readily differentiated: 

(13) 

(14) 

Substituting Eqs (13), (14) in differential equation (9) we obtain the general system 
oflinear equations (11) in the form 

(-e~Rn Ao + (6 - e~R~+~) A2 +- (20R~ - e~Ri+~) A4 + 

+ (42Ri - e~RfH) A6 + (72Rf - e~R~+~) As = 0 (i = I through 4). (15) 

This, together with the boundary condition (12), forms a system of five linear equa­
tions for the collocation points chosen. 

Concentration Profile of Component B 

The concentration profile for substance B across the catalyst particle will be approxi­
mated by the same polynomial as for substance A, 

Its first and second derivatives are 

(16) 

(17) 

(18) 

Substituting these derivatives and the solution for the concentration profile for 
component A in Eq. (3), we obtain the following system of linear equations 
in Bo, B 2 , ••• , Bs for the two consecutive 1st order reactions: 

(e~R~K)Bo + (e~R?+'K - 6)B2 + (e~Ri+aK - 20RnB4 + 
+ (e~Rf+~K - 42Ri) B6 + (e~R~+~K - 72Rf) Bs = e~R~CA(RJ. (19) 
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This equation is solved for the chosen collocation points together with the boundary 
condition (5), from which the supplementary equation (20) follows: 

(20) 

In this manner a system of linear equations is obtained, describing the concentration 
profile of component B across the catalyst particle for consecutive 1st order reactions. 

Now, assume that the first reaction is zeroth order and the second reaction is 
first order; then, substituting n = 0 and m = 1 in the system of equations (2) and (3). 
the numerical form of the equations is 

(21) 

(8iRiK)Bo + (8iRf+ cxK - 6)B2 + (8iRt+ cxK - 20RDB4 + 

+ (8iRT+ cxK - 42Rt) B6 + (8iR~+cxK - 72R~) Bs = 8iRj. (22) 

Similarly, for the reaction order combination n = 1, m = 0 the collocation method 
leads to a system of equations of which th~ first is described by a relation identical 
with Eq. (15), the second can be written in a general form as 

If both consecutive reactions are zeroth order, the solution of the diffusion equa­
tions simplifies appreciably. Relations describing the linear equations system for the 
unknown A's and B's, in a general collocation point Rh can be written as 

6A2 + 20R~A4 + 42RtA6 + 72RTAs = 81Rj 

6B2 + 20RfB4 + 42RtB6 + 72R~Bs = 8iRi(K - 1) . 

(24) 

(25) 

In this work, all the systems of linear algebraic equations obtained by solving the 
system of diffusion equations (2) and (3) for zeroth and first order reactions, in­
cluding the boundary conditions (4) and (5) (i.e., supplemented by Eqs (12) and (20» 
were solved by the matrix inversion method. 

Effectiveness and Selectivity Factors 

By finding all A's in polynomial (8) and all B's in polynomial (16), the concentration 
profiles of reactants inside a catalyst particle can be determined and used for the 
calculation of the effectiveness factor4 , 

(26) 
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Analytical expression of this integral leads to a finite algebraic equation, 

f/ = (Ao - BoK)/(3 + ex) + (A2 - B2K)/(S + ex) + (A4 - B4K)/(7 + ex) + 
+ (A6 - B6K)/(9 + ex) + (As - BsK)/(ll + ex) . (27) 

The selectivity for the reaction pathway (A) is defined as 7,S 

(28) 

in this expression, the integrals can be evaluated and the equation can be rearranged 
in the form 

S = [(Ao - BoK)/(3 + ex) + (A2 - B2K)/(S + ex) + 
+ (A4 - B4K)/(7 + ex) + (A6 - B6K) /(9 + ex) + 
+ (As - BsK)j(ll + ex)]/[ Ao/(3 + ex) + A2(S + ex) + 
+ A4/(7 + ex) + A6j(9 + ex) + As/(ll + ex)] . (29) 

The diffusion equations system (2), (3) was solved numerically on a Hewlett-Packard 
983SA computer for various combinations of Thiele's modulus e A, inhomogeneity 
parameter ex, rate constant ratio K, and reaction orders m and n. 

RESULTS 

Conditions of Solvability of the Problem 

The solvability of the system of diffusion equations for the reaction pathway (A) 
involving first and zeroth order reactions is constrained by certain input data values 
which were determined empirically. The constraints gi{len by the use of the coIloca­
tion approach are lowest for first order reactions. The system of diffusion equations 
is solvable for the entire region of K within which the solution was sought, 0·001 ~ 
~ K ~ 100. There are some limitations for the combinations of ex and e A: at ex < O-S 
the system is solvable up to e A = 20, and at ex > O'S the system can be solved for 
BA < SO. 

For the two reactions of zeroth order, the system of diffusion equations is solvable 
within the limited region of Thiele's modulus values of e A < S. An additional 
restriction was found for the rate constant ratio K; the coIlocation method is only 
applicable at K ~ 1, the concentration profile of substance B being zero and selectivity, 
unity at K = 1. 

For solving the system of diffusion equations describing the consecutive reactions 
with n = 0, m = 1, K can be chosen within the entire region examined, 0·001 ~ K ~ 
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~ 100. Reasonable values, however, are only obtained for low Thiele's modulus 
values, e A < 5, similarly as in the preceding case. 

The combination n = 1, m = 0 is not tractable by the collocation method as used 
in this work. 

Effect of Parameters on the Effectiveness Factor 

Fig. 1 shows the dependence of the catalyst effectiveness factor, 1/, on Thiele's modu­
lus e for various values of the particle inhomogeneity parameter IX. The rate con­
stant ratio for the two 1st order reactions was chosen K = 2. The nonuniform distri­
bution of the active component inside the catalyst particle, expressed by Eq. (1), 
affects significantly the relationship between the effectivenes factor and Thiele's 
modulus. With increasing inhomogeneity of the particle, which corresponds to a si­
tuation where the catalyst activity increases in the direction from the particle centre 
towards the outer surface, the factor increases. This result is consistent with the con­
cept of a better utilization of the active component if the latter is applied in the 
surface shell of the catalyst particle. 

Fig. 2 shows the dependence of the effectiveness factor, 1/, on Thiele's modulus 
for various ratios of the rate constants of the two 1st order reactions, calculated 
for an isotropic spherical particle (IX = 0). The solutions for four or nine collocation 
points are also shown; this comparison was made for estimating the effect of the 
degree of the polynomial on the solution. The internal diffusion effectiveness factor 
decreases with increasing rate constant ratio K, whose high values correspond to a si-

s 
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tuation where the second reaction in the consecutive reaction chain is preferred. 
The sensitivity of the" = f( e A) dependence to the parameter K is highest at ex = 0 
and decreases slightly with increasing ex. Fig. 2 also shows that increase in the number 
of collocation points, chosen symmetrically on the radial coordinate of the catalyst 
particle, leads to a better fit of the numerical solution to the theory at low values 
of the effectiveness factor". For" > 0'3, the solution was found independent of the 
number of collocation points used. 

The character of the dependences discussed is similar for the first and zeroth orders 
of the consecutive reactions. The effect of the reaction orders on the " = f( e A) 
dependence is illustrated by Fig. 3. This dependence is highly susceptible to the reac­
tion order particularly in the region of a strong effect of the internal diffusion on the 
rate of the process under study. Taking into account the solvability conditions 
(see above), the effect of the reaction orders m, n was examined at eA < 5. For 
n = 0 and at e > 3, the internal diffusion effectiveness factor" decreases to nega­
tive values lacking physical meaning; this is due to the error of the method used. 

Effect of Parameters on the Consecutive Reactions Selectivity 

In addition to the internal diffusion effectiveness factor, the effect of the various 
parameters on the selectivity of the consecutive reactions, defined by Eq. (28), was 
also investigated. The effect of Thiele's modulus on the selectivity is shown in Fig. 4. 
This dependence is parametrically highly sensitive to the rate constant ratio K; 
it decreases rapidly with increasing K. The effect of K on the selectivity is comparable 
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to that of K on the dependence 11 = f( e A), plotted in Fig. 2. The effect of increased 
number of collocation points on the accuracy of the numerical calculation of the 
effectiveness factor and the selectivity is approximately the same. This effect is ap­
preciable particularly in the region of the strong influence of the internal diffusion. 
It appeared that the e AK product is important for the( numerical solution of the 
diffusion equation system by the method used. Distorted effectiveness factor and 
selectivity values are obtained at e AK > 10; it is unreasonable from the physical 
point of view that the dependence of the selectivity on Tiele's modulus should not be 
monotonically decreasing. 

The effect of different activity profiles across the particle on the selectivity is 
illustrated by Fig. 5; catalysts with a steeper activity profile near the particle surface 
(IX ~ 10) provide a higher selectivity of the consecutive reactions. 

Concentration Profiles of the Reaction Components Across the Catalyst Particle 

The concentration differences inside the catalyst particle depend on the ratio of the 
chemical reaction rate to the diffusion rate. A significant parameter, affecting the 
concentration profiles of the reaction components, thus is Thiele's modulus e A 

and the related modulus eB (the diffusion coefficients D A and DB are assumed mutually 
equal). Examples of the effect of Thiele's modulus on the concentration profiles 
of substances A and B, for 1st order reactions, are shown in Figs 6 and 7, respecti­
vely; the concentration gradients are seen to increase with increasing Thiele's modu­
lus values, i.e., with increasing effect of internal diffusion on the reac60n process. 

The concentration distribution of the starting substance A and the intermediate 
product B across the catalyst grain is affected markedly by the concentration dif­
ferences of the active component, expressed by the inhomogeneity parameter IX (Figs 8 
and 9); the concentrations increase and the concentration differences for compounds 
A and B level out as the inhomogeneity parameter increases. 

FIG. 9 

Effect of the inhomogeneity parameter on the 
concentration profile of compounent B; 
e,\c~ 10,11= 1,m= 1,K= IO 
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CONCLUSIONS 

The results obtained show that catalysts with steeper activity profiles near the cata­
lyst particle surface layer exhibit higher values of the effectiveness factor and selecti­
vities for consecutive reactions; the concentration of the reaction components 
in these catalysts is also higher. The ratio ofthe rate constants of the two consecutive 
reactions acts against the effect of the inhomogeneity parameter. In the internal diffu­
sion region both the effectiveness factor and the selectivity in dependence on Thiele's 
modulus are parametrically highly sensitive to the reaction orders of the consecutive 
reactions. 

This theoretical treatment should now be followed by consecutive reactions selec­
tivity experiments using catalysts with different radial distribution of activity or the 
active component. 

LIST OF SYMBOLS 

Ai coefficients of polynomial (8) 
B j coefficients of polynomial (16) 
c concentration (mol m - 3) 

Co concentration outside particle (mol m - 3) 

C dimensionless concentration 
C(R) concentration profile 
dp catalyst grain diameter (m) 
D effective diffusion coefficient (m2 s - 1) 

k rate constant 
k 0 rate constant at R = 1 
K rate constant ratio 
m reaction order with respect to component B 
n reaction order with respect to component A 
r reaction rate (mol kg -1 S - 1) 

rkin reaction rate in kinetic regime (mol kg - 1 S - 1) 

R dimensionless particle radius 
Ri collocation point coordinate 
S selectivity 
IX inhomogeneity parameter 
11 internal diffusion effectiveness factor 
8 Thiele's modulus, dp(kcCn - 1/ D)o.s 

subscripts: 

A reaction component A 
B reaction component B 
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